private key - definição. O que é private key. Significado, conceito
Diclib.com
Dicionário Online

O que (quem) é private key - definição

CRYPTOSYSTEM THAT USES BOTH PUBLIC AND PRIVATE KEYS
Private key; Asymmetric key algorithm; Public key algorithm; Public key; Public key cryptography; Asymmetric key cryptography; Public key encyption; Public key crytography; Asymmetric key; Asymmetric key encryption algorithm; Public key encryption; Public-key encryption; Public-key; Asymmetric key encryption; Asymmetric cryptography; Non-secret encryption; Asymmetric key algorithms; Asymmetric encryption; Keypair cryptography; Public Key Cryptography; Private key encryption; Public-key cryptosystem; Public key cryptosystem; Assymetric key cryptography; PubKey; Asymmetric-key cryptography; Asynchronous encryption; Public/private key cryptography; Asymmetric-key algorithm; Key pair; Keypair; Key Pair; Asymmetric crypto; Public encryption key; Asymmetric cryptosystem; Asymmetric cypher; Asymmetric cipher; Asymmetric algorithm; Asymmetric Algorithms; Public Key Encryption; Private Key Encryption; Secret-key; Key pairs; Asymmetric-key cryptosystem; Public key pair; Public-key encrytption; Asymmetrical encryption; Private keys; Applications of public-key cryptography
  • digitally signed]] with Alice's private key, but the message itself is not encrypted.
1) Alice signs a message with her private key.
2) Using Alice's public key, Bob can verify that Alice sent the message and that the message has not been modified.
  • keys]] suitable for use by an asymmetric key algorithm.
  • In an asymmetric key encryption scheme, anyone can encrypt messages using a public key, but only the holder of the paired private key can decrypt such a message. The security of the system depends on the secrecy of the private key, which must not become known to any other.
  • symmetric cipher]] which will be, in essentially all cases, much faster.

private key         
<cryptography> A piece of data used in {private-key cryptography} and public-key cryptography. In the former the private key is known by both sender and recipient whereas in the latter it is known only to the sender. (2008-02-07)
private-key cryptography         
ALGORITHM
Symmetric Algorithms; Symmetric key; Symmetric encryption; Symmetric key cryptography; Symmetric cypher; Shared key; Symmetric cipher; Symmetric-key cipher; Symmetric key algorithms; Symmetric cryptography; Private-key cryptography; Symmetric key encryption; Symmetric key algorithm; Reciprocal cipher; Reciprocal encipherment; Private key cryptography; Symmetric-key encryption algorithm; Symmetric-key cryptography; Private-key; Symmetric algorithm; Private-key encryption; Symmetrical encryption
<cryptography> As opposed to public-key cryptography, a cryptographic method in which the same key is used to encrypt and decrypt the message. Private-key algorithms include the obsolescent Data Encryption Standard (DES), triple-DES (3DES), the Advanced Encryption Standard (AES), also known as Rijndael, Blowfish, Twofish RC2, RC4, RC5 and RC6. A problem with private-key cryptography is that the sender and the recipient of the message must agree on a common key via some alternative secure channel. Public-key cryptography gives an answer to this problem. (2008-02-07)
Key (music)         
  • ii-V<sup>7</sup>-I progression]] in C [[File:Ii-V-I turnaround in C.mid]]
TONIC NOTE AND CHORD OF A MUSICAL PIECE
Major key; Key (Music); Musical key; Major Key; Key of D; Musical keys; Key coloration; Key relationship; Musical Key; Music key; Minor-key; Minor–key; Major-key; Key of E
In music theory, the key of a piece is the group of pitches, or scale, that forms the basis of a musical composition in classical, Western art, and Western pop music.

Wikipédia

Public-key cryptography

Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security.

In a public-key encryption system, anyone with a public key can encrypt a message, yielding a ciphertext, but only those who know the corresponding private key can decrypt the ciphertext to obtain the original message.

For example, a journalist can publish the public key of an encryption key pair on a web site so that sources can send secret messages to the news organization in ciphertext. Only the journalist who knows the corresponding private key can decrypt the ciphertexts to obtain the sources' messages—an eavesdropper reading email on its way to the journalist cannot decrypt the ciphertexts. However, public-key encryption does not conceal metadata like what computer a source used to send a message, when they sent it, or how long it is. Public-key encryption on its own also does not tell the recipient anything about who sent a message—it just conceals the content of a message in a ciphertext that can only be decrypted with the private key.

In a digital signature system, a sender can use a private key together with a message to create a signature. Anyone with the corresponding public key can verify whether the signature matches the message, but a forger who does not know the private key cannot find any message/signature pair that will pass verification with the public key.

For example, a software publisher can create a signature key pair and include the public key in software installed on computers. Later, the publisher can distribute an update to the software signed using the private key, and any computer receiving an update can confirm it is genuine by verifying the signature using the public key. As long as the software publisher keeps the private key secret, even if a forger can distribute malicious updates to computers, they cannot convince the computers that any malicious updates are genuine.

Public key algorithms are fundamental security primitives in modern cryptosystems, including applications and protocols which offer assurance of the confidentiality, authenticity and non-repudiability of electronic communications and data storage. They underpin numerous Internet standards, such as Transport Layer Security (TLS), SSH, S/MIME and PGP. Some public key algorithms provide key distribution and secrecy (e.g., Diffie–Hellman key exchange), some provide digital signatures (e.g., Digital Signature Algorithm), and some provide both (e.g., RSA). Compared to symmetric encryption, asymmetric encryption is rather slower than good symmetric encryption, too slow for many purposes. Today's cryptosystems (such as TLS, Secure Shell) use both symmetric encryption and asymmetric encryption, often by using asymmetric encryption to securely exchange a secret key which is then used for symmetric encryption.

Exemplos de pronúncia para private key
1. private key pairs.
Crypto 101 _ Ben Yu & Simar Mangat _ Talks at Google
2. with your private key.
Bits to Bitcoin - How Our Digital Stuff Works _ Mark Stuart Day _ Talks at Google
3. with your private key.
Crypto 101 _ Ben Yu & Simar Mangat _ Talks at Google
4. They can get to that private key.
Communications Security _ Phil Zimmermann _ Talks at Google
5. and you generate your random private key
Crypto 101 _ Ben Yu & Simar Mangat _ Talks at Google
Exemplos do corpo de texto para private key
1. In light of the above fact, this invention will be seen as a landmark in cryptography and information security, fortifying enterprise businesses against identity thieves and hackers. «The same technique applied to database encryption will help government agencies counteract breach and compromise attempts on their highly sensitive data by outsiders supported by internal dishonest elements secretly leaking information,» said Cheman, whose algorithm is advanced and will be highly sought after due to its continued protection of information even after the private key is compromised by hackers with the help of trust breachers from within the company.